Every other Wednesday from June through September, WRP staff and trained volunteers monitor bacteria, conductivity, and turbidity at 23 swimming holes and recreational access sites along the White River (see map on page 2).

Why Do We Monitor Water Quality?

In 2001 the WRP launched the first citizen-based, water quality monitoring program in the White River watershed in response to concerns that bacteria and other pollution might be making the White River unsafe for recreation. To address these concerns about the safety of the river for swimming, tubing, and paddling, the WRP Water Quality Monitoring Program goals are:

- To identify and address water quality problems;
- To raise awareness about water quality in the White River watershed; and
- To promote long-term stewardship.

What Do We Monitor?

Every other Wednesday from June through September, WRP staff and volunteers monitor bacteria, conductivity, and turbidity at 23 swimming holes and recreational access sites along the White River (see map on page 2).

Bacteria

Monitoring bacteria is a practical way to identify potential water quality problems. Bacteria are microscopic, single-celled organisms that can be found in virtually any environment. One type of bacteria, *Escherichia coli* (*E. coli*), is commonly found in water. *E. coli* is a rod-shaped bacterium that lives in the intestines of all warm-blooded animals. There are many different strains of *E. coli* and most are harmless to humans.

E. coli bacteria found in the river come from many sources, including animal droppings, faulty or leaking sewage systems, stormwater runoff, and disturbed soil. The presence of *E. coli* in the river does not necessarily mean that the river is unsafe for swimming and tubing, just that there is an increased risk of exposure to pathogens.

Conductivity and Turbidity

Conductivity and turbidity are also important indicators of water quality. Conductivity indicates the presence of dissolved salts and other compounds in the water. High conductivity readings may indicate increased runoff from roads and other sources. Turbidity indicates how clear or cloudy the water is. A high turbidity reading means that a high number of suspended solids are in the water, likely from erosion.
The White River is the longest, undammed tributary to the Connecticut River. The entire watershed covers 711 square miles and is generally divided into five subwatersheds:

In 2017 WRP staff and volunteers collected water quality samples from the 23 locations depicted below.

Where Do We Monitor?

Lower White River
- 1. Old River Rd Ledges—Hartford
- 2. West Hartford Bridge—Hartford
- 3. The Sharon Academy—Sharon
- 4. Pinch Rock—Royalton

First Branch
- 12. Mouth of 1st Branch—Royalton
- 13. Tunbridge Fairgrounds
- 14. Tunbridge Town Pool Tributary

Second Branch
- 15. Chelsea Recreation Park

Upper White River
- 5. Peavine Park—Bethel
- 6. Silver Lake—Barnard
- 7. Gaysville Bridge—Stockbridge
- 8. Mouth of Tweed—Stockbridge
- 9. Peavine Park—Stockbridge
- 10. Lion’s Club Park—Rochester

Third Branch
- 11. Taylor Meadow Road—Hancock
- 16. Mouth of 2nd Branch—Royalton
- 17. Dugout Road—Randolph
- 18. Sunset Lake—Brookfield
- 19. Mouth of 3rd Branch—Bethel
- 20. Stock Farm Road—Bethel
- 21. Randolph Recreation Park
- 22. Riford Brook Road—Braintree
- 23. Bingo Brook—Rochester

Results shown are for DRY sampling dates.

As a rule of thumb, avoid swimming or tubing in the White River following a rain event and/or if the water is muddy because there may be an increased risk of exposure to bacteria.
How Do We Analyze Our Data?

We analyze water samples for bacteria using the Idexx QuantiTray 2000 system. We then compare our results to two different EPA standards for recreational waters:

1. The “single sample” or “daily” standard looks at one sample from one site on one particular day. The EPA daily standard is 235 colonies/100 mL for contact recreation, which means that roughly 8 in every 1,000 people in that water may have an increased risk of getting sick.

2. Because bacteria levels are constantly changing, the EPA “geometric mean” or “seasonal” standard looks at bacteria levels over the course of a whole season for one site. The EPA seasonal standard is 126 colonies/100 mL. By calculating the seasonal standard, we can identify trends occurring at each sampling site over time. At the suggestion of state scientists, we also calculate the seasonal standard for each location based on “rainy” and “dry” weather conditions.

Conductivity and turbidity results are recorded and used to identify relationships between these data and bacteria levels.

2017 Bacteria Summary (see complete bacteria data online at www.whiteriverpartnership.org)

- **Bacteria levels are often high immediately after rain and generally low during dry weather**—Out of 203 total samples in 2017, 34 samples (17%) exceeded the EPA daily standard; 29 (85%) of these exceedances occurred on “wet” sampling days.

- **2017 had a mix of weather conditions.** Out of nine sampling dates, 4 were wet and 5 were dry.

- **Exceedances of the “daily” standard were the lowest in 5 years.** This was despite the mixed weather conditions.

- **The number of sites exceeding the “seasonal” standard increased from last year.** The 8 sites exceeding the seasonal mean in 2017 place this result in the middle of the pack for the last five years.

- **Overall the 2017 bacteria results continued a trend of lower levels since post-Irene 2012 results, but “the Branches” still had high readings.** Seven sites (3 on the First, 2 on the Second and 2 on the Third Branch) had bacteria levels exceeding EPA seasonal standards overall, and six of these exceeded seasonal standards under “dry” conditions. We continue additional “adaptive” monitoring to help understand these trends and develop projects toward mitigation.

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td># of samples exceeding the daily standard</td>
<td>44 of 191 = 23%</td>
<td>45 of 195 = 23%</td>
<td>51 of 197 = 26%</td>
<td>41 of 195 = 21%</td>
<td>34 of 203 = 17%</td>
</tr>
<tr>
<td># of samples exceeding the chart maximum: >2419 colonies E. coli/100mL sample</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td># of sites exceeding the seasonal standard</td>
<td>9 of 22</td>
<td>7 of 22</td>
<td>10 of 22</td>
<td>6 of 22</td>
<td>8 of 23</td>
</tr>
</tbody>
</table>

What Do The Monitoring Results Mean?

Because of the relationship between rainfall and bacteria levels, the WRP recommends taking precautions when deciding to swim or tube in the White River and its tributaries.

As a rule of thumb, avoid swimming or tubing in the White River following a rain event and/or if the water is muddy because there may be an increased risk of exposure to bacteria.
How Do We Improve Water Quality?

Plant a Tree
Native trees growing along riverbanks provide many benefits, including improving water quality by filtering pollutants out of surface runoff; improving habitat by providing food and cover for fish and wildlife; and reducing flood impacts by stabilizing riverbanks and slowing flood waters. Help us provide these benefits by protecting existing trees on your riverbank or having FREE TREES planted along your riverbank through the WRP’s Trees for Streams Program.

Cleanup the River
Trash in the river can make water quality and recreational access unsafe. Help us keep the White River clean and accessible by removing trash along the river when you see it or by volunteering with the WRP’s River Cleanup Program.

Upcoming Events
In 2018 WRP staff and volunteers will monitor water quality on May 30; June 13 and 27; July 11 and 25; August 8 and 22; and September 5 and 19. Bacteria data will be posted online at www.whiteriverpartnership.org and www.facebook.com/WhiteRiverPartnership.

Special Thanks
THANK YOU to our 2017 water quality volunteers: Joan Allen, Erik Anderson, Misti & Shay Berry, Jon Binhammer, Jon Bouton, Lisa Campbell, Mark Heckmann, Angela Jensen and the VLS-NRC crew, Kathy Leonard, Jim Martin, Jeremy Mears, Don Munro, Julie Paye, Megan Payne, Cynthia Quilici, Sue Sellew, and Paul Shriver. THANK YOU to Orange County Headwaters Project for additional funding in 2017.

THANK YOU to the businesses and partners that stored water samples in 2017: Corner Stop-South Royalton, Champlain Farms-Randolph, Floyd’s General Store-Randolph Center, Green Mountain National Forest-Rochester Ranger Station, Locust Creek Outfitter’s-Bethel, M&N’s-Royalton, Sharon Trading Post, and Will’s Store-Chelsea.

THANK YOU to Vermont Water Quality Division staff and partners Jim Kellogg, Danielle Owczarski, Sean Regalado, and Elijah Schumacher for helping analyze 2017 data.

For More Information
Please contact us: (802) 763-7733; info@whiteriverpartnership.org; www.whiteriverpartnership.org